

Biochar use, market and legislation in Europe Hans-Peter Schmidt, ithaka institute for organic carbon cycling, Switzerland

Biochar Production in EU

Germany	5000 t (EBC certified)
Austria	500 t (EBC certified)
Switzerland	700 t (EBC certified)
UK	500 t
all other EU countries	< 50 t

Gazifier char-ash:	ca. 50.000 t

Germany's Charcoal Import 2009

Länder	import: weight	import value	price	total value
	t	kEUR	Euro/t	k US \$
2009				
Belgien (ab 1999)	695,8	483	694	656
Frankreich	8766,6	2857	326	3895
Litauen (ab 1992)	2608,5	355	136	510
Niederlande	11585,3	5993	517	8214
Österreich	2620,0	1380	527	1849
Polen	17453,4	7632	437	10392
Spanien	1877,9	760	405	1019
Tschechische Republik (ab 1993)	762,3	237	311	328
Bosnien und Herzegowina (ab 1993)	3421,3	1227	359	1736
Serbien (ab 06/05)	926,8	344	371	472
Ukraine (ab 05/92)	5515,0	1991	361	2793
Agypten	244,9	111	453	152
Namibia	5282,8	1248	236	1804
Nigeria	14362,8	3991	278	5472
Argentinien	27164,5	8912	328	12074
Brasilien	1595,7	379	238	515
Paraguay	51205,3	17277	337	23450
ndonesien	9115,4	2632	289	3684
Malaysia	4523,7	1315	291	1737
Philippinen	3599,9	991	275	1347
Singapur	1748,4	459	263	622
Summe	325.803		-	82.721
Average price			354 €	115.295 €

Biochar Definition

Biochar is a charcoal-like substance that is pyrolysed from sustainably obtained biomass under controlled conditions with clean technology and which is used for any purpose which does not involve its rapid mineralisation to CO_{2^*} (EBC)

Biochar is a name for charcoal when it is used for particular purposes, especially as a soil amendment (Wikipedia)

legislation - a linguistic problem?

- in all except 4 EU countries, charcoal can be used as soil amendment, compost additive, fertilizer support
- vegetal carbon (E 153) is legal in EU as feed and as food additive
- Charcoal = Holzkohle = charbon de bois etc.
- vegetal carbon = Pflanzenkohle = charbon vegetal etc.
- biochar = charcoal = vegetal carbon
- biochar is legal if you call it charcoal or vegetal carbon without any environmental limits
- the same material is illegal even when it complies with the most sever thresholds it you call it biochar

So what's the difference?

Biochar is a charcoal-like substance that is pyrolysed from sustainably obtained biomass under controlled conditions with clean technology and which is used for any purpose which does not involve its rapid mineralisation to CO_2 . (EBC)

Biochar is a name for charcoal when it is used for particular purposes, especially as a soil amendment (Wikipedia)

farming

Soil amendment

7. Carbon fertiliser, 8. Compost, 9. Substitute for peat in potting soil, 10. Plant protection, 11. Compensatory fertiliser for trace elements

Livestock farming

1. Silage agent, 2. Feed additive / supplement, 3. Litter additive, 4. Slurry treatment, 5. Manure composting, 6. Water treatment in fish farming

Biogas produktion

21. Biomass additive, 22. Biogas slurry treatment

farming

Soil amendment

7. Carbon fertiliser, 8. Compost, 9. Substitute for peat in potting soil, 10. Plant protection, 11. Compensatory fertiliser for trace elements

Livestock farming

1. Silage agent, 2. Feed additive / supplement, 3. Litter additive, 4. Slurry treatment, 5. Manure composting, 6. Water treatment in fish farming

Biogas produktion

21. Biomass additive, 22. Biogas slurry treatment

decontamination

Decontamination of soil and natural water

17. Soil additive for soil remediation, 18. highly adsorbing, plantable soil substrates 19. A barrier preventing pesticides getting into surface water 20. Treating pond and lake water

2.6 Waste water and sewage treatment

23. Active carbon filter, 24. Pre-rinsing additive, 25. Soil substrate for organic plant beds, 26. Composting toilets

2.7 Treatment of drinking water

27. Micro-filters, 28. Macro-filters in developing countries

2.8 Exhaust filter

29. Controlling emissions, 30. Room air filters

industry

Building material

12. Insulation, 13. Air decontamination, 14. Decontamination of earth foundations, 15. Humidity regulation, 16. Protection against electromagnetic radiation ("electrosmog")

Textile industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

Food industry

48. Conservation of food 49. Digesting helper

industry

Building material

12. Insulation, 13. Air decontamination, 14. Decontamination of earth foundations, 15. Humidity regulation, 16. Protection against electromagnetic radiation ("electrosmog")

Textile industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

Food industry *48. Conservation of food 49. Digesting helper*

Wellness

48. Filling for mattresses, 49. filling for pillows

Radio protection

50. Shield against electromagnetic radiation (microwaves, TV, Netzgeräte, computer)

Further uses

Industrial materials (31. carbon fibres, 32. plastics)
Electronics (33. semiconductors, 34. batteries)
Metallurgy (35. metal reduction)
Cosmetics (36. soaps, 37. skin-cream, 38. therapeutic bath additives)
Paints and colouring (39. food colorants, 40. industrial paints)
Energy production (41. pellets, 42. substitute for lignite)
Medicines (43. detoxification, 44. carrier for active pharmaceutical ingredients)

Cascading use of biochar Use it nine times – pay it only once

1. Silage Cascading use of biochar

1.

Charging biochar with malolactic bacteria and add

1 % BC to silage

ithaka institute

reducing mycotoxins and butyric acid, adsorption of pesticides and herbicides

Hof Holderstock – Wilhelmine & Bruno Koller

2. Feed additive Cascading use of biochar

2. 1 % BC for feeding Carbon-Feed

increases energy efficiency of digestion, decreases milk cells, adsorption of gram positive bacteria (botulisme), pesticides, herbicides, reducing odors, fixation of nutrients, improvement of barn climate

CarbonFeed

- Ingredients: Wheat bran (40 %), biochar (15 %), sugar cane molasses, linseed, alpine herbs, corn flakes, wheat flakes, barley flakes, minerals
- Water 43 %, raw proteins 7.5 %, raw ash 5.2 %, raw fibre 4.7 %, raw fat 1.7 %, sodium 0.03 %, calcium 0.08 %, phosphorous 0.5 %, magnesium 0.2 %, lysine 2.7 g/kg, methionine 1.0 g/kg

For cows, horses, chicken, pigs, sheep – dogs, cats ...

Reduction of methane emission caused by rumination

Figure 4. Reduction in methane due to biochar and nitrate in local "Yellow" cattle fed cassava root and cassava foliage supplemented or not with biochar and with urea or potassium nitrate as NPN source

http://www.lrrd.org/lrrd24/11/leng24199.htm for full details

Leng et al 2012, Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage BC – Biochar KN – form of potassium nitrate

3. Litter Amendment Cascading use of biochar

reducing humidity and odors, fixation of nutrients, reducing NH3 and CH4 emissions, ameliorates hygiene, hoof infections

Hof Holderstock – Wilhelmine & Bruno Koller

3.

Biochar induced ammonia reduction in chicken farm

4. Liquid manure additive Cascading use of biochar

1- 1,5 % BC in liquid manure

Reducing NH3-losses, methane emissions, increases plant nutrient efficiency, decreases nutrient leaching and odors

5. Composting the manure Cascading use of biochar

5.

Composting the carbon manure + the separated solids of the liquid manure

10 – 20% BC

Terra Preta

Composting with biochar

20 % - 25% less C-lost
12 % - 20 % less N-lost

reduction of GHG during composting

Figure 2. Changes in N2O emission rate during pig manure composting.

Wang et al. 2012: dx.doi.org/10.1021/es305293h | Environ. Sci. Technol.

<u>Chen et al. 2010, Chemosphere 78</u>: up to 65% reduced N loss (total Kjeldahl N) with up to 9% bamboo biochar addition (pig manure + sawdust +/- BC (pH 8.8)

Peat substrate vs BC-compost pumpkin

C.Kammann / M. Schroeder – University Giessen

Peat substrate vs BC-compost pumpkin

DELINAT Institut für Ökologie und Klimafarming

Nicotina benthamiana

Nicotina benthamiana

Summary – biomass yield changes

Kammann C, Schmidt HP, Schroeder M

University Giessen & DELINAT Institut für Ökologie und Klimafarming

Swiss Terra Preta

greenhouse substrates, urban farming, pot substrates, special cultures, tree nurcery

Corresponding to 1000 t biochar / ha

Planting trees with terra preta

Highly concentrated hotspots close to the roots

under the roots: biochar substrates

7. Soil Amendment Cascading use of biochar

7.

Soil amendment Fixation of nutrients Increase of SOM

8. Increase of humus (SOC) Cascading use of biochar

Data from a vineyard field trial in Valais

8. Increase of humus (SOC) Cascading use of biochar

Data from a vineyard field trial in Valais

8. Increase of humus (SOC) Cascading use of biochar

Data from a vineyard field trial in Valais

9. Carbon sequestration Cascading use of biochar

9.

Carbon sequestration: SOM, BC Reducing NH₃, CH₄, N₂0

CO2-certificates?

Ecosystem Service Certificate

A Biochar Cascade

Adding complexity to multiply yields

Albert Bates Global Village Institute for Appropriate Technology

Creative Commons Attribution-NonCommercial-NoDerivs-Share Alike 3.0 License Water Treatment Silage Conditioner Digestive Supplement

Litter Amendment

Manure Conditioner

Soil Amendment

Carbon Sequestration

Decontamination of waste water

Adsorption of contaminents by activated biochar

DF = Diclofenac (Entzündungshemmer) BT = Benzotriazole (Rostschutzmittel)

Ana Slijepcevic, K. Friedrich, Favre, Schmidt (2013)

HEV Fribourg & Pyreg & **ithaka** institute

Magnetic charging of biochar

Biochar

Ferrous sulfate

ithaka institute

© Ivo Safarik

55 Uses of Biochar

Building material

12. Insulation, 13. Air decontamination, 14. Decontamination of earth foundations, 15. Humidity regulation, 16. Protection against electromagnetic radiation ("electrosmog")

Textile industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

Food industry *48. Conservation of food 49. Digesting helper*

Wellness

48. Filling for mattresses, 49. filling for pillows

Radio protection

50. Shield against electromagnetic radiation (microwaves, TV, Netzgeräte, computer)

Further uses

Industrial materials (31. carbon fibres, 32. plastics)
Electronics (33. semiconductors, 34. batteries)
Metallurgy (35. metal reduction)
Cosmetics (36. soaps, 37. skin-cream, 38. therapeutic bath additives)
Paints and colouring (39. food colorants, 40. industrial paints)
Energy production (41. pellets, 42. substitute for lignite)
Medicines (43. detoxification, 44. carrier for active pharmaceutical ingredients)

Biochar in Textile Industry

45. Fabric additive for functional underwear,46. Thermal insulation for functional clothing,47. Deodorant for shoe soles

B PRO-DIRECT

30% bambou-char

Conservation of Food

Regulation of humidity, anti-bacteriologic, adsorption of ethylen

<u>Cosmetics</u>

36. soaps, 37. skin-cream, 38. therapeutic bath additives)

Biochar Food

Graphen

Zhengrong Gu,, 2013. American Transactions on Engineering & Applied Sciences. Volume 2 No.1 ISSN 2229-1652 TEM of Activated carbon from DDGS biochar (KOH 0.075 1050 °C). TEM at 20 nm,

Graphen

Stephen Joseph, C. Kammann

University NSW & University Giessen&

Forest Waste for Supercapacitors

https://www.pddnet.com/news/2013/10/fores t-waste-cheaper-greener-supercapacitors#!

Biochar-Clay-Plaster for optimal indoor climate

humidity control, thermal insulation, toxin fixation, electro-magnetic shielding

50% Biochar

Biochar for habitats

Effects of Biochar-Plaster

- Regulation / buffering of humidity
- Insulation
- Noise protection
- Toxin binding (solvents, VOC)
- Blocking of high frequency radiation
- Low electrostatic charging of air
- Conservation of wood
- Reduction of dust (mites!)

Effects of Biochar-Plaster

- Deodorising
- aesthetic
- Anti-bacteriological, fungicide (repellent)
- Air cleaning
- Increase of redox potential
- Emission of far-infrared radiation

Ithaka Institute's conferencing room

Ithaka Institute's conferencing room

Painted with with Claycolour

Ithaka Institute's Office

carbon recycling is the key for the sustainable development of the human civilisation

At least 4 Gt C would have to be fixated by biomass recycling while reducing the human emissions by at least 5 Gt C.

Biochar Definition

Biochar is a charcoal-like substance that is pyrolysed from sustainably obtained biomass under controlled conditions with clean technology and which is used for any purpose which does not involve its rapid mineralisation to CO_{2^*} (EBC)

Biochar is a name for charcoal when it is used for particular purposes, especially as a soil amendment (Wikipedia)

Who knows what biochar is?

Probe		Probe A, Bi Pflan	ochen 28.06.12 zenkohle	Grenzwerte gemäß Richtlinie European Biochar Certificate für					
Labor-Nr.:		112	037219	die Produktion von Pflanzenkohle					
Parameter	Einheit	anl	wf = TM	Qualitätsstufe basic	Qualitätsstufe premium				
Schüttdichte	kg/m ³	552	-						
Wasser gesamt	Ma%	73,2	-						
Asche 550°C	Ma%	5,0	18,6						
Brennwert (Ho,V)	kJ/kg	7185	26808						
Heizwert (Hu,p)	kJ/kg	5371	26704						
Wasserstoff Kohlenstoff Stickstoff Sauerstoff (Differenz) [berechnet]	Ma% Ma% Ma% Ma%	0,12 20,1 0,48 1,1	0,47 75,0 1,80 4,1	> 50	> 50				
H/C-Verhältnis (molar) O/C-Verhältnis (molar)		0,074 0,041	0,074 0,041	< 0,6 < 0,4	< 0,6 < 0,4				
Schwefel ges.	Ma%	< 0,03	< 0,03						
Carbonat CO ₂	Ma%	1,09	4,07						
pH-Wert el. Leitfähigkeit	µS/cm	10,1 3000	-	≤ 10	≤ 10				

ithaka institute

	Einheit	Wert i.d.OS	Wert i.d.TS	Faktor	TE	1992	Methode
Physikalisch-chemische Par	ameter						
pH-Wert		9,2					DIN EN 12176
Trockenrückstand	%	99,0					DIN 38414-S2
Wassergehalt	%	1,0					berechnet
Glühverlust (org.Substanz)	%	12,0	12,1	>			DIN 38414-S3
organischer Kohlenstoff (TOC)	%	12,0	12,1				n. Dumas
Pflanzennährstoffe							
Gesamtstickstoff (N)	%	0,35	0,35				DIN ISO 13878
Ammoniumstickstoff (NH4-N)	%	<0,05	<0,05				DIN 38406-E5
Phosphat ges. (als P2O5)	%	15,5	15,7	\geq			DIN EN ISO 11885
Kalium ges. (als K2O)	%	0,990	1,00				DIN EN ISO 11885
Calcium ges. (als CaO)	%	9,03	9,12				DIN EN ISO 11885
basisch wirksame Stoffe (CaO)	%	5,70	5,76				AbfKlärV 1992
Magnesium ges. (als MgO)	%	2,40	2,42				DIN EN ISO 11885
Kobalt (Co)	mg/kg		28,2				DIN EN ISO 11885
Mangan (Mn) gesamt	mg/kg	418	422				DIN EN ISO 11885
Selen (Se)	mg/kg	<1,9800	<2.00				DIN EN ISO 11885

-

- -

ithaka institute

· ,

Different feed stock different char

Adriana Downie, Alan Crosky and Paul Munroe (2009)

Different temperature different char

Adriana Downie, Alan Crosky and Paul Munroe (2009)

Stable Carbon (fixed, laticed carbon) Carbon Backbone

Schimmelpfennig & Glaser 2012

REM-picture of a fraction of biochar Biomasse: green clipings – Swiss Biochar

Volatile Organic Carbon (10min at 150°C)

BC#	Parent material	Unit	PT (°C)	pН	$SA (m^2 g^{-1})$	C	Ν	0	Н	H_2O	VM	Ash
Fast p	yrolysis biochar											
1	Macadamia shells	F1	n/a	6.2	6.9	84.3	0.6	1.5	2.3	9.5	15.2	1.7
2	Oak hardwood sawdust	F2	500	8.0	46	61.8	0.21	2.3	0.6	80.7	5.0	15.8
3	Macadamia shells	F3	650	6.9	0.45	71.0	0.88	1.2	2.5	5.0	19.5	20.4
Slow p	yrolysis biochar											
4	Corn stover	SP1	515	9.5	4.4	45.0	0.5	1.0	1.7	11.5	30.9	55.0
5	Pine wood chip	SP2	465	6.8	0.1	75.0	0.3	9.0	3.4	55.0	34.9	6.0
6	Peanut hulls	SP2	481	8.0	1.0	59.0	2.7	12.0	2.3	72.0	5.3	15.0
7	Corn stover	SP3	500	8.9	4.2	25.0	0.6	5.0	1.1	9.1	41.3	69.0
8	Corn stover	SP2	410	n/a	2.2	42.0	1.0	11.0	1.8	4.1	n/a	54.0
9	Pine wood chip	SP2	465	6.8	0.2	71.0	0.2	11.0	3.3	12.0	72.3	9.0
10	Peanut hulls	SP2	481	5.1	286	60.0	0.9	10	1.1	5.2	n/a	15.0
11	Corn stover	SP4	505	10.0	17.3	46.0	1.2	4.0	1.5	28.0	13.8	54.0
12	Coconut shell	SP1	550	8.9	15.1	80.1	0.5	2.5	n/a	12.4	8.7	n/a
13	Distillers grain	SP5	350	6.8	0.3	67.4	7.4	6.5	4.7	1.8	43.9	11.3
14	Distillers grain	SP5	400	6.9	0.3	68.1	7.3	5.9	4.2	2.0	36.9	11.7
15	Corn cob	SP5	350	8.7	<0.1	76.5	0.7	12.9	4.2	2.9	32.2	2.8
16	Corn cob	SP5	400	9.0	<0.1	80.1	0.6	8.8	3.7	3.1	24	3.7
17	Wood waste	SP6	400	6.9	3.5	76.9	0.8	11.5	3.6	3.7	25.8	3.5
18	Wood waste	SP6	450	8.4	26.8	77.9	0.7	11	3.1	3.6	22.8	3.6
19	Wood waste + composting	SP7	465	8.6	63.5	43.0	2.2	n/a	n/a	11.4	32.3	n/a
20	Wood chip (pellet)	SP8	650	9.8	177.2	69.3	0.2	17.7	1.2	5.6	11.7	6.0
21	Oak hardwood	SP9	538	9.8	33.7	53.4	0.4	9.8	2.6	6.3	32.5	27.1
22	Wood waste	SP10	500	5.0	66.3	68.7	0.1	19.9	3.3	3.3	33.6	4.6
23	Oak hardwood	SP11	540	6.6	n/a	73.3	0.3	n/a	n/a	1.7	n/a	2.4
24	Oak hardwood	SP12	n/a	8.5	106.3	90.1	0.3	4.5	2.8	1.3	15	1.0
25	Pine wood chip	SP13	500	7.2	n/a	87.2	0.43	6.44	3.6	3.24	45.8	2.3
26	Sugar cane bagasse	SP15	350	5.0	n/a	75.2	0.66	15.8	4.6	3.42	39.2	3.6
27	Pine wood chip	SP15	350	4.6	n/a	74.7	0.45	18.4	5.0	2.74	45.2	1.5
28	Swine manure	SP15	350	8.1	0.92	50.8	3.74	6.64	5.0	2.31	46.2	32.3

Spokas et al. 2011

Volatile Organic Carbon at 900°C

	Proximate analysis [*]										
Sample	Fixed C%	Volatile Matter%	Ash%	Total%							
Pine 350-5	47.8	50.8	1.4	100							
Pine 450-5	62.2	34.9	2.9	100							
Pine 550-5	73.9	22.0	4.2	100.1							
Pine 650-5	78.9	15.2	5.9	100							
Pine 350-100	58.0	38.7	3.4	100.1							
Pine 450-100	63.6	33.0	3.4	100							
Pine 550-100	77.7	21.6	0.7	100							
Pine 650-100	81.6	13.4	5.0	100							
RH 350-5	32.4	30.3	37.3	100							
RH 450-5	36.4	19.1	44.5	100							
RH 550-5	38.5	14.6	46.9	100							
RH 650-5	40.5	9.3	50.3	100.1							
RH 350-100	39.3	20.7	40.1	100.1							
RH 450-100	35.0	19.4	45.6	100							
RH 550-100	37.0	11.3	51.7	100							
RH 650-100	38.6	11.3	50.0	99.9							
WS 350-5	49.5	39.6	10.9	100							
WS 450-5	59.2	23.2	17.6	100							
WS 550-5	62.8	17.2	20.0	100							
WS 650-5	64.4	14.2	21.3	99.9							

Table 2 Proximate analysis data for biochar samples produced from selected feedstock at four temperatures (350, 450, 550 and 650°C) and two heating rates (5 and 100°C min⁻¹)

Crombie et al. 2013

Syngas – Biochar - Condensates

equal & continuous syngas flow for whole batch

thermographique analysis (woodchar)

TGA olive pomeces

VOCs & DOCs

- **Chemical classes** ۲
- Alcohols •
- Acides •
- Amines •
- Aldehydes •
- **Ketones** •

Pł

Li

Some known mo toxic molecules

Glycol Hydoxy-propionic Butryric acids

Di More than 1500 carbonaceous molecules Sι

- N • Ca
- •

•

•

•

•

- Aliphatics •
- Fatty acids •
- Furans .
- PCB
- PAH .
-

Benzene Trichlorethene Toluene.....

ithaka institute

Graber & Elad 2013

47 trace elements analysed in all biochar samples

ኛ 🚉 👗 🖻 🛍 🗝	🍼 🌱 ·	- CI -	- 🔁 😫	Σ - Ζ	↓ Ă↓	11 😼 7	0%	0 🚽	Calibri		-	11 -	F K [[] = =		99 % 0)(
Einfügen Format	Extras	Daten	Fenster	?													
	-	_	-	-													
В	C	П	F	F	G	н		J	к		M	N	Π	P	Q	В	Т
detection limit	Al	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dv	Er	Eu	Fe	Gd	6
Biochar (ppm)	5	0.2	0.0005	0.0007	12	0.0002	0.006	0.005	0.13	0.009	0.203	0.0004	0.0002	0.0001	3	0.0005	t
plant (ppm)	3	0.2	0.0003	0.0005	9	0.0001	0.005	0.004	0.09	0.006	0.145	0.0003	0.0002	0.0001	2	0.0004	L
soil (ppm)	45	2.1	0.0048	0.0069	120	0.0015	0.064	0.05	1.28	0.088	2.028	0.0045	0.0025	0.0014	26	0.0050	
number																	Γ
1	62259	56	1.333	4.7390	20484	1.511	17.66	5.01	31.91	1.591	128.33	0.750	0.454	0.229	27349	1.094	ſ
2	26680	315	1.288	0.1692	24849	0.491	26.70	6.80	50.73	3.553	30.57	1.788	1.029	0.480	15561	2.094	L
3	6684	278	0.215	0.0637	13568	0.377	8.70	1.53	9.46	0.583	15.76	0.453	0.261	0.084	12261	0.597	
4	15103	311	0.792	0.1154	14676	0.635	18.21	2.99	12.29	1.470	22.27	1.173	0.712	0.299	11560	1.421	L
5	5228	434	0.117	0.0110	21557	0.243	4.52	1.84	11.11	0.417	11.97	0.268	0.152	0.038	8351	0.370	L
6	3980	146	0.121	0.0067	19094	0.033	5.57	5.20	12.96	0.484	12.17	0.291	0.166	0.069	2663	0.417	L
7	4104	- 39	0.047	0.0176	2781	0.060	1.52	0.25	5,69	0.037	2.24	0.097	0.059	0.024	1460	0.115	L
8	6121	216	0.181	0.0608	15430	0.498	4.92	1.85	10.28	0.362	9.68	0.362	0.210	0.073	7927	0.434	L
9	35251	184	1.143	0.1487	66342	0.248	35.04	7.77	16.16	3.300	26.69	2.143	1.239	0.568	19504	2.746	L
10	473	27	0.020	0.0076	4131	0.102	0.37	0.33	2.61	0.119	31.65	0.021	0.011	0.008	1037	0.028	L
11	83	12	0.007	0.0022	1179	0,188	0.13	0.11	0.24	0.016	1.49	0.008	0.005	0.002	244	0.009	
12	202	39	0.011	0.0019	5817	0.047	0.35	0.32	0.66	0.039	7,16	0.019	0.010	0.005	262	0.027	
13	87	16	0.004	0.0024	4017	0.080	0.10	0.07	0.06	0.012	1.63	0.008	0.005	0.002	78	0.009	L
14	4590	126	0.129	0.0082	58274	0.060	4.78	1.55	20.39	0.495	16.37	0.315	0.172	0.073	2802	0.412	L
15	1567	35	0.039	0.0280	18514	0.098	1.78	0.46	1.47	0.176	18.76	0.125	0.073	0.030	1035	0.144	
17	7370	119	0.224	0.0187	69324	0.017	9,19	1.88	44.83	0.792	68.63	0.564	0.314	0.146	5413	0.753	
16	33350	247	1.083	0.2367	41412	0.422	34.33	6.60	16.77	3.334	34.89	2.528	1.457	0.623	18455	2.747	Г
																	Ļ
		-		-													-

Lutz Winter, University Göttingen

wheat-straw-char with NPK-minerals

© Stephen Josephs

Biochar Mineral Complex

© Stephen Josephs

Technical Definition of Biochar

	EBC	IBI	
C-content	> 50 %	> 60% / > 40 / > 10	
H/Corg	< 0.7	< 0.7	
Contaminents (HM)	Pb, Ni, Cr, Hg, Zn, Cu, Cd	Pb, Ni, Cr, Hg, Zn, Cu, Cd	
Org. Contaminents	PAH, PCB, Dioxines, Furanes	PAH, PCB, Dioxines, Furanes	
nutrients	declaration	declaration	
BC, VOC, pH, BET, WHC	declaration	declaration	

feedstock	positive liste	any
production	positive energy balance	any

© European Biochar Foundation (EBC)

Guidelines

European Biochar Certificate

for biochar production

Version 4.3 of 10th September 2012

Schmidt HP, (Delinat Institute), Abiven S (University Zurich), Kammann C (University Giessen), Glaser B (University Halle), Bucheli T (ART Reckenholz), Haren Rv (Kiemkracht), Starmann I (InKnowCom), Leifeld J (ART Reckenholz)

Pillars of the EBC-Certificate

www.european-biochar.org

- Sustainable provision and production of biomass feedstock – (positive list)
- 2. Energy efficient, low emission **pyrolysis** technique
- **3. Biochar characterization** key parameters
- 4. Biochar quality low contaminant level
- 5. Low hazard **use and application** of biochar

D	Measure	Analysis value	asic	nexe *	ethod	Remarks, thresholds		
			ф ела	Ani	Me			
Biomass used								
301	Only biomasses listed in the positive list were used?							
302	All non-organic waste was removed							
303	The biomasses were not contaminated by paint, solvents or other synthetic materials.							
304	When using primary agricultural products, it is guaranteed that these were grown in a sustainable manner.							
305	No forestry products were used from forests not managed in a sustainable manner							
306	Biomasses used were not transported to the pyrolysis plant over distances greater than 80 km					exemption		
Biochar	properties - test results per batch							
501	Biochar carbon content in %			x		Threshold: 50%		
502	Black carbon content in % of the overall carbon content					Guideline: 10 - 40% (not mandatory)		
503	H/Corg ratio of the biochar					Threshold: 0.7		
504	O/Corg ratio of the biochar					Guideline: 0.4		
505	An analysis of the nutrients contained in the biochar is available and attached to the delivery documents?			•				
506.01	Lead concentration in g/t					basic: 150 g/ t premium: 120 g/t		
506.02	Cadmium concentration in g/t					basic: 1.5 g/t premium: 1 g/t		
506.03	Copper concentration in g/t					Threshold: 100 g/t		
506.04	Nickel concentration in g/t					basic: 50 g/t premium: 30 g/t (exemption)		
506.05	Mercury concentration in g/t					Threshold: 1 g/t		
506.06	Zinc concentration in g/t					basic: 400 g/t premium: 300 g/t		
506.07	Chromium concentration in g/t					basic: 90 g/t premium: 80 g/t		
507,01	pH value					t	itute	

Just an example: PAH threshold

5.8 The biochar's PAH content (sum of the EPA's 16 priority pollutants) must be under 12 mg/kg DM for *basic* grade and under 4 mg/kg DM for *premium* grade biochar.

Total and bioavailable PAHs

Biochar: Contaminant source or sink? Isabel Hilber | © Agroscope Reckenholz-Tänikon Research Station ART

PAH uptake by plant roots

30% biochar in compost

PAH in biochar 9100 mg / t

stitute

equivalent to 900 t biochar / ha

Hilber, I, Schroeder M, Kammann C, Bucheli T, Schmidt HP – University Giessen, ART CH, Delinat-Institut

PAH uptake by plant roots

However, biochar is too unimportant for the regulator to accept different thresholds than for other soil amendments like compost or other animal feed products.

30% biochar in compost

PAH in biochar 9100 mg / t

stiti

equivalent to 900 t biochar / ha

Hilber, I, Schroeder M, Kammann C, Bucheli T, Schmidt HP – University Giessen, ART CH, Delinat-Institut

How to take samples ?

Hilber, I, Bucheli T, Schmidt HP – Agroscope Schweiz, Delinat-Institut

PAH values in real and mixed samples

Mixed sampling AAA - 3kg

Sample precision: 0.041

Pillars of the EBC-Certificate

- Independent on-site control (governmental accredited: q.inspecta)
- Independent sampling
- Unified analytical methods (accredited labs)

EUROFINS Umwelt Ost GmbH

Ndl. Freiberg

Prüfverfahren: Bestimmung:

der Schüttdichte

Probenvorbereitung - Probenteilung fester Brennstoffe

des Wassergehaltes und der Analysenfeuchtigkeit (thermisches Verfahren)

des Aschegehaltes

des Brennwertes und Berechnung des Heizwertes Verfahren mit adiabatischem Mantel

des Gesamtgehaltes an Kohlenstoff, Wasserstoff und Stickstoff instrumentelle Methoden

des Schwefelgehaltes (Gesamtschwefel) instrumentelle Methoden

der Elementarzusammensetzung und Berechnung des Sauerstoffgehaltes

des Gehaltes an Carbonat-Kohlenstoffdioxid

der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) mittels GC/MS

von Polychlorierten Dibenzodioxinen (PCDD) und Dibenzofuranen (PCDF) und von polychlorierten Biphenylen (PCB) (FF)

des pH-Wertes

der spezifischen elektrischen Leitfähigkeit

Salzgehalt - Leitfähigkeit des wässrigen Auszugs (N)

Probenahme und Probenvorbereitung an festen Brennstoffen zur Bestimmung der Gehalte an Spurenelementen

von 62 Elementen durch Anwendung induktiv gekoppelter Plasma-Massenspektrometrie (ICP-MS)

von Quecksilber (Hg)

der chemischen Zusammensetzung von Brennstoffaschen [und Schlacken]

von Ag, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, W, Zn, Zr DIN 51705

DIN 51701-3

DIN 51718; TGA 701 D4C

analog DIN 51719; TGA 701 D4C

DIN 51900, Teil 1 und Teil 3; Kalorimetersystem C 4000 A/ C 5000 DUO

DIN 51732; Analysenautomat Leco TRU SPEC CHN

DIN 51724 Tell 3; Analysenautomat SC-144 DR

DIN 51733

DIN 51726

DIN EN 15527

AIR DF 100, HRMS

analog DIN ISO 10390

DIN ISO 11265

nach VDLUFA-Methodenbuch Bd. I, A 10.1.1

DIN 22022-1

DIN EN ISO 17294-2 (E 29)

DIN EN 1483 (E 12) DIN 51729, Teil 1, Teil 11 (Aufschluss, Messung: ICP)

DIN EN ISO 11885 (E 22)

Methodes

ring trials

Pillars of the EBC-Certificate

- Independent on-site control (governmental approved: q.inspecta)
- Independent sampling
- Unified analytical methods (authorized labs)
- Regular revision of standard by the scientific board of the EBC
- Legally backed-up
- Economical viable
- Close to practice, understandable
- Voluntary industrial standard

Safeguarding Biochar quality

English Deutsch

European Biochar Foundation

Contact Newsletter EU-Cost Press

The European Biochar Foundation

search

home

EU Biochar Certificate Conferences & News Biochar Producers

Ithaka Journal

The European biochar foundation achieves its objective by

The European biochar foundation has the objective to promote sustainable biochar production and sustainable biochar application for environmental, agricultural and industrial use in Europe and the rest of the world.

- Supporting and stimulating Biochar applied research and development in the domains of environment, agriculture, industrial applications, biochar production technologies and biochar feedstocks.
- Promoting sustainable production and application of biochar by biochar knowledge dissemination by organising conferences, courses, masterclasses, summer schools workshops, and by the use of media (print and digital media) and any other means
- Advising authorities, enterprises, non-governmental organizations, educational institutes and biochar feedstock producers, biochar producers and biochar end-users
- Developing and implementing biochar certification schemes for sustainable biochar production and biochar application
- Developing best practice advices and directives for the use of biochar in agriculture, for climate mitigation and optimising nutrient cycles
- Controlling biochar certification schemes by auditing and certification and by authorizing organizations to certify biochar feedstock, biochar production and biochar application.
- 7. Participating in (inter)national cooperations, enterprises, foundations and other organizations
- 8. Taking and protecting Intellectual Property
- 9. And any other legal means

The European Biochar Foundation will be founded on 29th of August 2012.

European Biochar Foundation

- non for profit foundation
- Supported by
 - EU-INTERREG IVb NSR Biochar and
 - EU COST ACTION TD 1107

Promoting sustainable biochar production and sustainable biochar applications for environmental, agricultural and industrial use in Europe and the rest of the world;

End of Waste (EoW)

- charcoal made from untreated forest wood can be used in agriculture
- charcoal made from grape pomaces, green clippings, straw is considered as waste and can't be used in agriculture
- It has to be defined which biomass and when it is charcoal / biochar

Example 2 – A BUSINESS TOOK CONTAMINATED BIOMASS AND MADE CHARCOAL. THEY THEN BLENDED THE CHARCOAL WITH SAWDUST AND MADE BRIQUETTE'S. EOW WAS GRANTED AS THIS MATERIAL WAS SOLD AS AN ORGANIC COAL LIKE SUBSTITUTE, USED IN THE SAME WAY AND WITH NO FURTHER ADVERSE EFFECTS TO THE ENVIRONMENT. <u>HTTP://A0768B4A8A31E106D8B0-50Dc802554EB38A24458B98FF72D550B.R19.cF3.RACKCDN.com/LIT_6700_ED6A43.PDF</u>

REACH. EXEMPTIONS CONSUMPTION.

- TITTLE 1, CHAPTER 2, ARTICLE 2. SECTION 5.
- The provisions of Titles II, V, VI and VII shall not apply to the extent that a substance is used:
- (B) IN FOOD OR FEEDING STUFFS IN ACCORDANCE WITH REGULATION (EC) NO 178/2002 INCLUDING USE:
- (I) AS A FOOD ADDITIVE IN FOODSTUFFS WITHIN THE SCOPE OF COUNCIL DIRECTIVE 89/107/EEC OF 21 DECEMBER 1988 ON THE APPROXIMATION OF THE LAWS OF THE MEMBER STATES CONCERNING FOOD ADDITIVES AUTHORISED FOR USE IN FOODSTUFFS INTENDED FOR HUMAN CONSUMPTION;
- (III) AS AN ADDITIVE IN FEEDING STUFFS WITHIN THE SCOPE OF REGULATION (EC) NO 1831/2003 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL OF 22 SEPTEMBER 2003 ON ADDITIVES FOR USE IN ANIMAL NUTRITION;
- (IV) IN ANIMAL NUTRITION WITHIN THE SCOPE OF COUNCIL DIRECTIVE 82/471/EEC OF 30 JUNE 1982 CONCERNING CERTAIN PRODUCTS USED IN ANIMAL NUTRITION.

EXEMPTIONS WASTE.

REACH.

- TITTLE 1, CHAPTER 2, ARTICLE 2. SECTION 7.
- The following shall be exempted from Titles II, V and VI:
- (D) SUBSTANCES, ON THEIR OWN, IN PREPARATIONS OR IN ARTICLES, WHICH HAVE BEEN REGISTERED IN ACCORDANCE WITH TITLE II AND WHICH ARE RECOVERED IN THE COMMUNITY IF:
- (I) THE SUBSTANCE THAT RESULTS FROM THE RECOVERY PROCESS IS THE SAME AS THE SUBSTANCE THAT HAS BEEN REGISTERED IN ACCORDANCE WITH TITLE II; AND THE INFORMATION REQUIRED BY ARTICLES 31 OR 32 RELATING TO THE SUBSTANCE THAT HAS BEEN REGISTERED IN ACCORDANCE WITH TITLE II IS AVAILABLE TO THE ESTABLISHMENT UNDERTAKING THE RECOVERY.

REACH

Annex V EXEMTIONS FROM THE OBLIGATION TO REGISTER IN ACCORDANCE WITH ARTICLE 2

SUBSTANCES WHICH OCCUR IN NATURE: MEANS A NATURALLY OCCURRING SUBSTANCE AS SUCH, UN GRAVITATIONAL MEANS, BY DISSOLUTION IN WATER, BY FLOTATION, BY EXTRACTION WITH WATER, BY STEA EXTRACTED FROM AIR BY ANY MEANS; NOT CHEMICALLY MODIFIED SUBSTANCE: MEANS A SUBSTANCE WHOSE CHEMICAL STRUCTURE REMAI TREATMENT, OR A PHYSICAL MINERALOGICAL TRANSFORMATION, FOR INSTANCE TO REMOVE IMPURITIES;

www.european-biochar.org

www.ithaka-journal.net

Biochar use, market and legislation in Europe Hans-Peter Schmidt,

ithaka institute for organic carbon cycling, Switzerland

